viernes, 10 de junio de 2011

BENCENO

benceno

FORMULA:
 C6H6


USOS:
El Benceno se utiliza como constituyente de combustibles para motores, disolventes de grasas, aceites, pinturas y nueces en el grabado fotográfico de impresiones. También se utiliza como intermediario químico.


OBTENCIÓN:
El benceno es el principal constituyente de una clase de compuestos llamados hidrocarburos aromáticos, los cuales derivan su nombre de la obtención de substancias aromáticas como el aceite de girasol, vainilla, almendras amargas y benjuí.

BIBLIOGRAFIAS


HIDRUROS INSATURADOS

APLICACION DE LA IUPAC


Unión Internacional de Química Pura y Aplicada

De Wikipedia, la enciclopedia libre
La Unión Internacional de Química Pura y Aplicada (International Union of Pure and Applied Chemistry), IUPAC, tiene como miembros a las sociedades nacionales de química. Es la autoridad reconocida en el desarrollo de estándares para la denominación de los compuestos químicos, mediante su Comité Interdivisional de Nomenclatura y Símbolos (Interdivisional Commitée on Nomenclature and Symbols). Es un miembro del Consejo Internacional para la Ciencia (ICSU).
La IUPAC se fundó, a finales de la segunda década del siglo XX, por químicos de la industria y del mundo académico. Durante casi ocho décadas la Unión ha tenido éxito creando las comunicaciones mundiales en las ciencias químicas y uniendo a académicos, tanto a los químicos de la industria como del sector público, en un idioma común. La IUPAC se ha reconocido, durante mucho tiempo, como la máxima autoridad mundial en las decisiones sobre nomenclatura química, terminología, métodos estandarizados para la medida, masas atómicas y muchos otros datos evaluados de fundamental importancia. La Unión continúa patrocinando reuniones internacionales al máximo nivel que van desde los simposios científicos especializados a las reuniones con impacto social de la CHEMRAWN. Durante la Guerra Fría, la IUPAC llegó a ser un importante instrumento para mantener el diálogo técnico entre científicos de distintas nacionalidades a lo largo del mundo.

 Divisiones de la IUPAC

La IUPAC tiene una estructura de grupos, de distintos ámbitos, asociados, que cohesiona las Organizaciones Nacionales que representan a los químicos de los diferentes países miembros. Hay 57 Organizaciones Nacionales adheridas a la IUPAC, y otros 4 países están unidos a la IUPAC en calidad de Organizaciones Nacionales Asociadas.[1] Casi un millar de químicos, a lo largo de todo el mundo, están comprometidos con los proyectos de esta Organización, constituyendo una base voluntaria para el trabajo científico de la IUPAC, principalmente a través de proyectos que son englobados en ocho Divisiones y otros Comités.

 Historia

La IUPAC se fundó en 1919 por químicos tanto de sectores de la industria como de las universidades que reconocieron la necesidad de establecer estándares globales en la simbología y protocolos operacionales de la química. La normalización de masas, medidas, nombres y símbolos es esencial para el éxito continuo de la empresa científica y para el desarrollo y crecimiento del comercio internacional.
Este deseo entre químicos por colaborar en estos menesteres facilitó el trabajo internacional, pero una de las características iniciales de la Unión fue la fragmentación de la comunidad. Incluso antes de la creación de la IUPAC un grupo de su predecesora, la Asociación Internacional de Sociedades Químicas (IACS), se había reunido en París en 1911 y había establecido un abanico de propuestas para el trabajo que la nueva Asociación debía dirigir. Estos incluyeron las siguientes directrices:
Aunque el año 1911 pueda parecer una fecha temprana, en realidad, el primer impulso internacional para organizar la nomenclatura química de los compuestos orgánicos (la nomenclatura de Ginebra de 1892) nace a partir de una serie de reuniones internacionales, la primera de las cuales fue organizada por Friedrich August Kekulé en 1860.

 Las normas

La IUPAC es bien conocida por publicar los datos definitivos y más recientes relativos a masas atómicas que son ciertas y abundancias isotópica. También publica una amplia variedad de otros datos de gran valor para químicos e ingenieros del sector. Por ejemplo:
  • Las tablas [termodinámica] internacionales del estado fluido del mundo. Un volumen reciente en esta directriz proporciona los datos sobre el metanol. Esta forma de actuar es muy apropiada en un momento en el que los usos de esta sustancia se están extendiendo con rapidez, como resultado de la legislación medioambiental vigente que fomenta el uso de combustibles más limpios.
  • La recopilación de datos de solubilidad. Ya se han publicado más de 70 volúmenes de datos en este campo.
  • Entalpías de vaporización de compuestos orgánicos.
  • Materiales de referencia recomendados para el logro de propiedades físicoquímicas específicas.
  • Evaluación de los datos cinéticos y fotoquímicos para su aplicación en química atmosférica.
La IUPAC está ampliamente involucrada en el establecimiento de protocolos para los procedimientos analíticos y clínicos, las normas que fijan la calidad y el diseño de los laboratorios de investigación. Algunos ejemplos son:
  • Los protocolos para el análisis de aceites, grasas y derivados.
  • El protocolo para laboratorios analíticos con certificación ISO 9000.
  • La estandarización en determinaciones de ensayos inmunológicos.
  • Los métodos estándar para la determinación de trazas de elementos en los fluidos corporales.
  • JCAMP-DX, un formato estándar de intercambio de archivos de ordenador que son específicos para espectros.
  • Termodinámica experimental: la medida de las propiedades de transporte de fluidos; calorimetría de disoluciones. ] Medioambiente
Las diversas Comisiones y Comités de la IUPAC han emprendido una serie extensa de proyectos medioambientales. Algunos ejemplos son:
  • La química analítica medioambiental.
  • Las partículas medioambientales.
  • Reciclaje de polímeros.
  • La determinación de trazas de elementos en el ambiente.
  • Datos cinéticos de gases para la química atmosférica.
  • El glosario de términos químicos atmosféricos.
  • Límites de residuos de pesticidas en agua.[3]

Congresos patrocinados por la IUPAC

La IUPAC organiza congresos bienales. La historia de los Congresos patrocinados por la IUPAC y su predecesor IACS se remonta a 1894 (con interrupciones largas consecuencia de las dos Guerras Mundiales).
Cada año la IUPAC patrocina un gran número de simposios organizados independientemente que cubren una amplia gama de temas especializados en química. El patrocinio por parte de la IUPAC atestigua sobre la calidad del programa científico e indica la convicción de los países organizadores de que científicos de todos los países pueden participar.
La IUPAC patrocina continuamente una serie de conferencias en Investigación de Química Aplicada a las Necesidades del Mundo (CHEMRAWN). Estas reuniones se enfocan sobre los temas químicos que tienen impacto sociopolítico a nivel mundial, como la disponibilidad de materias primas, la química de los alimentos, y materias medioambientales.

Comités permanentes

Comités permanentes encargados de asesorar al Presidente y al Comité Ejecutivo. Se coordinará el trabajo de la Unión en diversas áreas de la química.

 Comités operativos

  • CHEMRAWN (Chemical Research Applied to World Needs, investigación química aplicada a las necesidades mundiales), data de 1973. La principal actividad de la Comisión es la organización de conferencias relativas a dicha investigación.
  • CCE (Committee on Chemistry Education, comisión de eduación química). Esta Comisión intenta coordinar los intereses educativos de los órganos de la IUPAC mediante actividades por todo el mundo.
  • COCI (Committee On Chemistry and Industry, comisión de química e industria). Este Comité es el vínculo de la Unión con los asociados de la IUPAC Company y la comunidad industrial.

 Comités consultivos

  • FC (Finance Committee, comité de finanzas). Este Comité asesora a los oficiales de la Unión en la buena gestión de las finanzas e inversiones de la Unión.
  • CPEP (Committee on Printed and Electronic Publications, comisión de publicaciones impresas y electrónicas). Todos los aspectos del diseño y la aplicación de las publicaciones impresas y electrónicas son administrados por esta Comisión.
  • ICTNS (Interdivisional Committee on Terminology, Nomenclature and Symbols, comité interdivisonal acerca de la terminología, nomenclatura y símbolos). Esta es una actividad central en el campo, en la que la IUPAC es reconocida como la autoridad mundial en nomenclatura química, terminología, métodos estandarizados para las medidas, pesos atómicos, etc.

 El futuro de la IUPAC

La química surgió y se desarrolló históricamente como un campo científico interdisciplinar, con una definición amplia de sus límites. Parafraseando la definición de Linus Pauling de enlace químico: "cualquier cosa sirve a un químico a la hora de definir cómo es un enlace". La química puede definirse como una disciplina que abarca todas las áreas que son de interés a químicos y donde la ciencia molecular hace contribuciones significativas. El rico y diverso mundo de la química moderna abarca logros intelectuales notables, creatividad científica y originalidad y generación de nuevo conocimiento.
La IUPAC sirve al esfuerzo científico internacional en la doble función de una ciencia básica y un objetivo, contribuir a la Unión. La Unión se encuentra en una situación única para aglutinar los distintos aspectos interdisciplinares de la química, fortaleciendo este campo del saber a nivel internacional y esforzándose para conseguir altos niveles de excelencia y relevancia en el campo académico y la investigación industrial y promocionando el servicio de la química a la sociedad.

jueves, 9 de junio de 2011

APLICACION DE LA NOMENCLATURA

inorgánicos
Para iniciar el estudio de la nomenclatura es necesario distinguir primero entre compuestos orgánicos e inorgánicos. Los compuestos orgánicos son los que contienen carbono, comúnmente enlazados con hidrógeno, oxígeno, boro, nitrógeno, azufre y algunos halógenos. El resto de los compuestos se clasifican como compuestos inorgánicos. Éstos se nombran según las reglas establecidas por la IUPAC.
Los compuestos inorgánicos se clasifican según la función química que contengan y por el número de elementos químicos que los forman, con reglas de nomenclatura particulares para cada grupo. Una función química es la tendencia de una sustancia a reaccionar de manera semejante en presencia de otra. Por ejemplo, los compuestos ácidos tienen propiedades características de la función ácido, debido a que todos ellos tienen el ion H+1; y las bases tienen propiedades características de este grupo debido al ion OH-1 presente en estas moléculas. Las principales funciones químicas son: óxidos, bases, ácidos y sales.
Véase también: pH


Nomenclaturas
Se aceptan tres tipos de nomenclaturas para nombrar compuestos químicos inorgánicos:
nomenclatura por atomicidad, sistemática o estequiométrica (Nomenclatura IUPAC)
Este sistema de nomenclatura se basa en nombrar a las sustancias usando prefijos numéricos griegos que indican la atomicidad de cada uno de los elementos presentes en cada molécula. La atomicidad indica el número de átomos de un mismo elemento en una molécula, como por ejemplo H2O que significa que hay un átomo de oxígeno y dos átomos de hidrógeno presentes en cada molécula, aunque en una fórmula química la atomicidad también se refiere a la proporción de cada elemento en el que se llevan a cabo las reacciones para formar el compuesto; en este estudio de nomenclatura es mejor tomar la atomicidad como el número de átomos en una sola molécula. La forma de nombrar los compuestos es: prefijo-nombre genérico + prefijo-nombre específico (Véase en la sección otras reglas nombre genérico y específico).
Prefijos griegos
Atomicidad
met-
1
di-
2
prop-
3
tetra-
4
penta-
5
hexa-
6
hepta-
7
oct-
8
non- (o eneá)
9
deca-
10


Por ejemplo, CrBr3 = tribromuro de cromo; CO = monóxido de carbono
En casos en los que puede haber confusión con otros compuestos (sales dobles y triples, oxisales y similares) se pueden emplear los prefijos bis-, tris-, tetras-, etc.
Ejemplo: Ca5F (PO4)3 = fluoruro tris (fosfato) de calcio, ya que si se usara el término trifosfato se estaría hablando del anión trifosfato [P3O10]5-, en cuyo caso sería:
Ca8F (P3O10)3.
Stock
Este sistema de nomenclatura se basa en nombrar a los compuestos escribiendo al final del nombre con números romanos la valencia atómica del elemento con “nombre específico” (valencia o número de oxidación, es el que indica el número de electrones que un átomo pone en juego en un enlace químico, un número positivo cuando tiende a ceder los electrones y un número negativo cuando tiende a ganar electrones), anteponiendo a este número, encerrado entre paréntesis, se escribe el nombre genérico y el específico del compuesto de esta forma: nombre genérico + de + nombre del elemento específico + el No. de valencia. Normalmente, a menos que se haya simplificado la fórmula, la valencia puede verse en el subíndice del otro átomo (en compuestos binarios y ternarios). Los números de valencia normalmente se colocan como superíndices del átomo en una fórmula molecular.
Ejemplo: Fe2+3S3-2, sulfuro de hierro (III) [se ve la valencia III del hierro en el subíndice o atomicidad del azufre].
Nomenclatura tradicional, clásica o funcional
En este sistema de nomenclatura se indica la valencia del elemento de nombre específico con una serie de prefijos y sufijos .
  • Cuando el elemento sólo tiene una , simplemente se coloca el nombre del elemento precedido de la sílaba “de
(Na2O,oxido de sodio).
  • Cuando tiene dos valencias diferentes se usan los sufijos -oso e -ico.
-oso cuando el elemento usa la valencia menor: Fe+2O-2, hierro con la valencia +2, óxido ferroso
-ico cuando el elemento usa la valencia mayor: Fe2+3O3-2, hierro con valencia +3, óxido férrico[1]
  • Cuando tiene tres distintas valencias se usan los prefijos y sufijos
hipo -- oso (para la valencia inferior)
-oso (para la valencia intermedia)
-ico (para la valencia superior)
  • Cuando tiene cuatro distintas valencias se usan los prefijos y sufijos
hipo -- oso (para las valencias 1 y 2)
-oso (para la valencias 3 y 4)
-ico (para la valencias 5 y 6)
per -- ico (para la valencia 7):
  • Ejemplo: Mn2+7O7-2, óxido permangánico (ya que el manganeso tiene más de tres números de valencia y en este compuesto está trabajando con la valencia 7).
Otras reglas y conceptos generales
Los compuestos (binarios y ternarios) en su nomenclatura están formados por dos nombres: el genérico y el específico. El nombre genérico o general es el que indica a qué grupo de compuestos pertenece la molécula o su función química, por ejemplo si es un óxido metálico/básico, un óxido no metálico/ácido, un peróxido, un hidruro, un hidrácido, un oxácido, una sal haloidea, etc. Y el nombre específico es el que diferencia a las moléculas dentro de un mismo grupo de compuestos. Por lo general en los tres sistemas de nomenclatura se escribe primero el nombre genérico seguido del específico. Por ejemplo: óxido ferroso y óxido férrico, estos dos compuestos pertenecen al grupo de los óxidos y por eso su nombre genérico es óxido y a la vez los nombres específicos ferroso y férrico hacen referencia a dos compuestos diferentes FeO y Fe2 O3, respectivamente.
En general, en una fórmula molecular de un compuesto se coloca a la izquierda el elemento con carga o número de valencia positivo (elemento más electropositivo) y a la derecha el que contenga el número de valencia negativo (elemento más electronegativo). Y al contrario de esto, en nomenclatura se coloca primero el nombre genérico, que es el que designa al elemento de la derecha (el más electronegativo), y el nombre específico en segundo lugar, que es el que designa al elemento de la izquierda (el menos electronegativo). Por ejemplo: óxido de sodio - Na+1 2O-2, el nombre genérico óxido hace referencia al segundo elemento de la fórmula que es el “oxígeno”, el más electronegativo, y el nombre específico “sodio” hace referencia al primer elemento de la fórmula que es el sodio y el menos electronegativo o más electropositivo.
¿Cómo se trabajan los números de valencia para poder nombrar correctamente a un compuesto inorgánico? Muchos elementos pueden trabajar con más de un número de valencia, hasta el número 7 de valencia en los elementos representativos (Nota: recordar que el número de valencia se muestra como superindice de cada elemento en la formula del compuesto). Con las mismas fórmulas moleculares se puede determinar con que número trabajan los elementos del compuesto aunque en este no se observen. Esto se logra con el hecho que en la fórmula de un compuesto la suma de los números de valencia entre los elementos debe ser igual a cero, lo que significa que la molécula será neutra y sin carga. Contrario a esto ultimo, únicamente cuando la fórmula del compuesto indique una carga positiva o negativa de la molécula, lo que en cuyo caso la molécula pasaría a llamarse un ion (para graficar esto ultimo ver la imagen del "ácido nítrico" al final de la sección oxácidos, del lado derecho de la imagen se encuentran el ion nitrato y el ion hidrógeno con cargas negativa y positiva, respectivamente).
Como ejemplo para trabajar con valencias: FeO, este compuesto es un óxido y el oxígeno en los óxidos trabaja con una valencia de -2, así que para que la molécula sea neutra el hierro debe sumar el número de valencias suficientes para que la suma de valencias sea cero. Los números de valencia con los que puede trabajar el hierro son +2 y +3, así que, en esta molécula el hierro va a utilizar la valencia +2. Como solo hay un átomo de hierro y la valencia es +2, el elemento hierro en esa molécula tiene carga total de +2 y de igual manera como solo hay un átomo de oxígeno y trabaja con la valencia -2, la carga total de este elemento es de -2. Y ahora la suma de valencias o cargas es igual a cero +2) + (-2) = 0. La fórmula con valencias para este compuesto sería Fe2O-2.
En otro ejemplo, en el compuesto Fe2O3 se busca también un cero en la suma de valencias para que la molécula sea neutra, así que como hay 3 átomos de oxígeno y este trabaja con la valencia -2, la carga total para este elemento en la molécula “son el número de átomos del elemento multiplicado por el número de valencia con el que este trabaja”, que en total seria -6. De esta manera los átomos de hierro deben de sumar valencias para hacer cero al -6 de los oxígenos, en la sumatoria final. Como hay 2 átomos de hierro, este va a trabajar con el número de valencia +3 para hacer un total de +6, que sumados con los -6 de los oxígenos seria igual a cero, que significa una carga neutra para la molécula. Los números de átomos y valencias en la molécula son:
No. de átomos de hierro = (2)
No. de valencia para cada uno de los átomos de hierro = (+3)
No. de átomos de oxígeno = (3)
No. de valencia para cada uno de los átomos de oxígeno = (-2)
La operatoria completa se vería así: [2(+3)] + [3(-2)] = 0. La fórmula con valencias sería Fe23O3-2. Como ya se había explicado anteriormente el número de valencias indica los electrones que intervienen en un enlace, y en este último compuesto, Fe23O3-2, cada uno de los 2 átomos de hierro está cediendo 3 electrones a los átomos de oxígeno y a la vez cada uno de los 3 oxígenos está ganando 2 electrones; 2 de los 3 átomos de oxígeno reciben 2 electrones de los 2 átomos de hierro, y el 3er átomo de oxígeno recibe 2 electrones, 1 electrón sobrante de cada uno de los 2 átomos de hierro.
Estructura de Lewis de la molecula binaria, óxido férrico o dióxido de trihierro u óxido de hierro (III).
En la siguiente tabla se presentan los elementos que generalmente se usan para formar compuestos. Los números de valencia están en valor absoluto.
Elemento
Símbolo
Número de Valencia
Elemento
Símbolo
Número de Valencia
Aluminio
Al
3
Antimonio
Sb
3 y 5
Arsénico
As
3 y 5
Astato
At
1, 3, 5 y 7
Azufre
S
2, 4 y 6
Bario
Ba
2
Berilio
Be
2
Bismuto
Bi
3 y 5
Boro
B
3
Bromo
Br
1 y 5
Cadmio
Cd
2
Calcio
Ca
2
Carbono
C
2 y 4
Cesio
Cs
1
Cinc
Zn
2
Circonio
Zr
4
Cloro
Cl
1, 3, 5 y 7
Cobalto
Co
2 y 3
Cobre
Cu
2 y 1
Cromo
Cr
2, 3, 4, 5 y 6
Escandio
Sc
3
Estaño
Sn
2 y 4
Estroncio
Sr
2
Flúor
F
1
Fósforo
P
1,3 y 5
Galio
Ga
3
Germanio
Ge
2,4 y -4
Hafnio
Hf
4
Hidrógeno
H
1 y -1
Hierro
Fe
2 y 3
Iridio
Ir
2, 3, 4 y 6
Itrio
Y
3
Lantano
La
3
Litio
Li
1
Magnesio
Mg
2
Manganeso
Mn
2, 3, 4, 6, 7
Mercurio
Hg
1 y 2
Molibdeno
Mo
2, 3, 4, 5 y 6
Niobio
Nb
3
Níquel
Ni
2 y 3
Nitrógeno
N
2, 3, 4 y 5
Oro
Au
1 y 3
Osmio
Os
2, 3, 4 y 6
Plata
Ag
1
Platino
Pt
2 y 4
Plomo
Pb
2 y 4
Potasio
K
1
Renio
Re
1, 2, 4, 6 y 7
Rodio
Rh
2, 3 y 4
Rubidio
Rb
1
Rutenio
Ru
2, 3, 4, 6 y 8
Selenio
Se
2, 4 y 6
Silicio
Si
4
Sodio
Na
1
Talio
Tl
1 y 3
Tántalo
Ta
5
Tecnecio
Tc
7
Telurio
Te
2, 4 y 6
Titanio
Ti
3 y 4
Vanadio
V
2, 3, 4 y 5
Yodo
I
1,3, 5 y 7
Véase también: Estructura de Lewis
Óxidos (compuestos binarios con oxígeno)
Son compuestos químicos inorgánicos diatómicos o binarios formados por la unión del oxígeno con otro elemento diferente de los gases nobles. Según si este elemento es metal o no metal serán óxidos básicos u óxidos ácidos. El oxígeno siempre tiene valencia -2 con excepción en los peróxidos (ion peróxido enlazado con un metal) donde el oxígeno utiliza valencia “-1”.
Los óxidos se pueden nombrar en cualquiera de los tres sistemas de nomenclaturas; si se utiliza el sistema Stock, el número romano es igual a la valencia del elemento diferente del oxígeno; si se utiliza el sistema tradicional los sufijos y prefijo se designan de acuerdo a la valencia del elemento diferente del oxígeno y si se utiliza la nomenclatura sistemática, no se tienen en cuenta las valencias, sino que se escriben los prefijos en cada elemento de acuerdo a sus atomicidades en la fórmula molecular.
Óxidos básicos (metálicos)
Son aquellos óxidos que se producen entre el oxígeno y un metal cuando el oxígeno trabaja con un número de valencia -2. Su fórmula general es: Metal + O. En la nomenclatura Stock los compuestos se nombran con las reglas generales anteponiendo como nombre genérico la palabra óxido precedido por el nombre del metal y su número de valencia. En la nomenclatura tradicional se nombran con el sufijo -oso e -ico dependiendo de la menor o mayor valencia del metal que acompaña al oxígeno. Y en la nomenclatura sistemática se utilizan las reglas generales con la palabra óxido como nombre genérico.
En la nomenclatura tradicional para los óxidos que se enlazan con metales que tienen más de dos números de valencia se utilizan las siguientes reglas: metales con números de valencia hasta el 3 se nombran con las reglas de los óxidos y los metales con números de valencia iguales a 4 y mayores se nombran con las reglas de los anhídridos. Ejemplos: V2+3O3-2 se nombra como óxido, óxido vanádoso; V2+5 O5-2 se nombra como anhídrido, anhídrido vanádico. Los átomos de vanadio con número de valencia 2 (hipo-...-oso) y 3 (-oso) se nombran como óxidos y los átomos de vanadio con números de valencia 4 (-oso) y 5 (-ico) como anhídridos.
Metal + Oxígeno → Óxido básico
4Fe + 3O2 → 2Fe2O3
Compuesto
Nomenc. sistemática
Nomenc. Stock
Nomenc. tradicional
K2O
óxido de potasio[2]
óxido de potasio[2]
óxido potásico u óxido de potasio
Fe2O3
trióxido de dihierro
óxido de hierro (III)
óxido férrico
FeO
monóxido de hierro
óxido de hierro (II)
óxido ferroso
SnO2
dióxido de estaño
óxido de estaño (IV)
óxido estánico
Cuando los no metales, nitrógeno y fósforo, trabajan con números de valencia 4 y 2, mientras se enlazan con el oxígeno se forman óxidos (ver la sección de anhídridos, penúltimo párrafo).
Óxidos ácidos o anhídridos (no metálicos)
Son aquellos formados por la combinación del oxígeno con un no metal. Su fórmula general es no metal + O. En este caso, la nomenclatura tradicional emplea la palabra anhídrido en lugar de óxido, a excepción de algunos óxidos de nitrógeno y fósforo. La nomenclatura sistemática y la Stock nombran a los compuestos con las mismas reglas que en los óxidos metálicos. En la nomenclatura tradicional se nombran con los siguientes sufijos y prefijos.
hipo -- oso (para números de valencia 1 y 2)
-oso (para números de valencia 3 y 4)
-ico (para números de valencia 5 y 6)
per -- ico (para el número de valencia 7)
No metal + Oxígeno → Anhídrido
2S + 3O2 → 2SO3
Compuesto
Nomenc. sistem.
Nomenc. Stock
Nomenc. tradicional
Cl2O
óxido de dicloro o monóxido de dicloro
óxido de cloro (I)
anhídrido hipocloroso
SO3
trióxido de azufre
óxido de azufre (VI)
anhídrido sulfúrico
Cl2O7
heptóxido de dicloro
óxido de cloro (VII)
anhídrido perclórico
Cuando el flúor reacciona con el oxígeno se crea un compuesto diferente a un oxido acido ya que el oxígeno deja de ser el elemento más electronegativo, distinto a como pasa con todos los óxidos donde el oxígeno es el elemento más electronegativo. El único elemento más electronegativo que el oxígeno es el flúor con 4.0 mientras el oxígeno tiene 3.5. Así que el compuesto deja de llamarse óxido y se nombra como fluoruro de oxígeno para el sistema tradicional, fluoruro de oxígeno (II) para el sistema Stock y difluoruro de oxígeno para el sistemático. La fórmula es O2F2-1.
Los óxidos de nitrógeno, al igual que los óxidos del azufre, son importantes por su participación en la lluvia ácida. Con el término óxido de nitrógeno se hace alusión a cualquiera de los siguientes:
Entre las excepciones a las reglas de anhídridos para la nomenclatura tradicional están los óxidos de nitrógeno y óxidos de fósforo. Estos compuestos se nombran así:
  • N21O-2 Anhídrido hiponitroso
  • N2O-2 Óxido hiponitroso
  • N23O3-2 Anhídrido nitroso
  • N24O4-2 Óxido nitroso
  • N4O2-2 Óxido nitroso
  • N25O5-2 Anhídrido nítrico
  • P23O3-2 Anhídrido fósforoso
  • P4O2-2 Óxido fósforoso
  • P25O5-2 Anhídrido fosfórico
Cuando los metales, con más de dos números de valencia y que trabajan con los números de valencia iguales o mayores a 4, se enlazan con el oxígeno, forman anhídridos (ver la sección de óxidos básicos, segundo párrafo).
Los peróxidos son obtenidos cuando reacciona un óxido con el oxígeno monoatómico y se caracterizan por llevar el grupo peróxido o unión peroxídica (-o-o-). Son compuestos diatómicos en donde participan el grupo peróxido y un metal. La fórmula general de los peróxidos es Metal + (O-1) 2-2. En el sistema tradicional se utiliza el nombre peróxido en lugar de óxido y se agrega el nombre del metal con las reglas generales para los óxidos en esta nomenclatura. En las nomenclaturas Stock y sistemática se nombran los compuestos con las mismas reglas generales para los óxidos.
No todos los metales forman peróxidos y habitualmente lo hacen los del grupo 1A y 2A de la tabla periódica (alcalinos y alcalinotérreos).
Metal + Grupo peróxido → Peróxido
2Li+1 + (O)2-2 → Li2(O)2
Compuesto
Nomenc. sistemática
Nomenc. Stock
Nomenc. tradicional
H2O2
dióxido de dihidrógeno
peróxido de hidrógeno
agua oxigenada
CaO2
dióxido de calcio
peróxido de calcio
peróxido de calcio
ZnO2
dióxido de zinc
peróxido de zinc (II)
peróxido de zinc
También llamados hiperóxidos, son compuestos binarios que contienen el grupo o anión superóxido, la fórmula general es Metal + (O 2)-1 Aparentemente, el oxígeno tiene valencia -1/2. Generalmente el grupo superóxido reacciona con los elementos alcalinos y alcalinotérreos.
Se nombran como los peróxidos tan sólo cambiando peróxido por superóxido o hiperóxido.
Metal + Grupo superóxido → Superóxido
Li+1 + (O2)-1 → LiO2
Compuesto
Nomenclatura
KO2
superóxido o hiperóxido de potasio
CaO4 ó Ca (O2)2
superóxido de calcio
CdO4
superóxido de cadmio
Ozónidos
Son compuestos binarios formados por el grupo ozónido, que son 3 oxígenos enlazados con una valencia total de -1. La fórmula general para los ozónidos es Metal + (O3)-1. Los ozónidos se nombran de forma análoga a los peróxidos con la diferencia que en estos compuestos se utiliza el nombre ozónido en lugar de peróxido.
Metal + Grupo ozónido → Ozónido
K + (O3)-1 → KO3
Compuesto
Nomenclatura
KO3
ozónido de potasio
RbO3
ozónido de rubidio
CsO3
ozónido de cesio
Hidruros (Compuestos binarios con hidrógeno)
Hidruros metálicos
Son compuestos binarios o diatómicos formados por hidrógeno y un metal. En estos compuestos, el hidrógeno siempre tiene valencia -1. Se nombran con la palabra hidruro. Su fórmula general es Metal + H. Para nombrar estos compuestos en el sistema tradicional se utiliza la palabra hidruro y se agrega el nombre del metal con los prefijos -oso o -ico con las reglas generales para esta nomenclatura. Para los sistemas Stock y sistemático se utilizan las reglas generales con la palabra hidruro como nombre genérico.
Metal + Hidrógeno → Hidruro metálico
2K + H2 → 2KH
Compuesto
Nomenc. sistemática
Nomenc. Stock
Nomenc. tradicional
KH
hidruro de potasio
hidruro de potasio[2]
hidruro potásico o hidruro de potasio
NiH3
trihidruro de níquel
hidruro de níquel (III)
hidruro niquélico
PbH4
tetrahidruro de plomo
hidruro de plomo (IV)
hidruro plúmbico
[editar] Hidrácidos e hidruros no metálicos
Los hidrácidos (compuestos binarios ácidos) e hidruros no metálicos son compuestos formados entre el hidrógeno y un no metal de las familias VIA y VIIA ( anfígenos y halógenos respectivamente). Los elementos de estas dos familias que pueden formar hidrácidos e hidruros no metálicos son: S, Se, Te, F, Cl, I y Br, que por lo general trabajan con el menor número de oxidación, -2 para los anfígenos y -1 para los halógenos. Estos compuestos se nombran en el sistema tradicional y de forma diferente según si están disueltos (estado acuoso) o en estado puro (estado gaseoso). Los hidrácidos pertenecen al grupo de los ácidos, Ver la sección oxácidos.
Los hidruros no metálicos son los que se encuentran en estado gaseoso o estado puro y se nombran agregando al no metal el sufijo -uro y la palabra hidrógeno precedido de la sílaba “de”. En este caso el nombre genérico es para el elemento más electropositivo que sería el del hidrógeno y el nombre especifico es para el elemento más electronegativo que sería el del no metal, por ejemplo H+1 Br-1 (g) bromuro de hidrógeno, bromuro como nombre especifico e hidrógeno como nombre genérico.
No metal + Hidrógeno → Hidruro no metálico
Cl2 + H2 → 2HCl(g)
Los hidrácidos provienen de disolver en agua a los hidruros no metálicos y por esa misma razón son estos los que se encuentran en estado acuoso. Se nombran con la palabra ácido, como nombre genérico, y como nombre específico se escribe el nombre del no metal y se le agrega el sufijo –hídrico. Al igual que en estado gaseoso el nombre genérico es nombrado por el elemento más electropositivo.
Hidruro No metálico + Agua → Hidrácido
HCl(g) + H2O → H+1 + Cl-1
Compuesto
en estado puro
en disolución
HCl
cloruro de hidrógeno
ácido clorhídrico
HF
fluoruro de hidrógeno
ácido fluorhídrico
HBr
bromuro de hidrógeno
ácido bromhídrico
HI
yoduro de hidrógeno
ácido yodhídrico
H2S
sulfuro de hidrógeno
ácido sulfhídrico
H2Se
seleniuro de hidrógeno
ácido selenhídrico
H2Te
teluluro de hidrógeno
ácido telurhídrico
Hidruros con los nitrogenoides
Estos hidrácidos o hidruros no metalicos son compuestos binarios de hidrógeno y un elementos de la familia V que se enlazan siguiendo la fórmula NoMetal + H3. A estos compuestos se les llama por sus nombres comunes, aunque muy raramente se les nombra con las reglas de nomenclatura de los hidruros (metálicos). En estos hidruros no metálicos el hidrógeno es el elemento más electronegativo en el compuesto.
No metal + Hidrógeno → Hidruro no metálico
N2 + 3H2 → 2NH3
Compuesto
Nombre
NH3
amoníaco o trihidruro de nitrógeno
PH3
fosfina o trihidruro de fósforo
AsH3
arsina o trihidruro de arsénico
SbH3
estibina o trihidruro de antimonio
BiH3
bismutina o trihidruro de bismuto

Son compuestos binarios entre el hidrógeno y el boro que generalmente se enlazan siguiendo la fórmula BnHn+4. Estos compuestos no se nombran en un sistema de nomenclatura específico ya que las reglas para nombrarlos son especiales. Se utiliza la palabra borano con un prefijo numérico griego (tabla de prefijos) que depende del número de átomos de borano presentes en la molécula.
Compuesto
Nombre
BH3
monoborano o borano
B2H6
diborano
B3H7
triborano
B4H8
tetraborano
B10H14
decaborano
Son compuestos binarios de hidrógeno y silicio que se enlazan generalmente siguiendo la fórmula SinH2n+2. Los silanos al igual que los boranos no tienen un sistema de nomenclatura específico para ser nombrados y utilizan las mismas reglas de nomenclatura, con la palabra silano como base.
Compuesto
Nombre
SiH4
monosilano, silano o tetrahidruro de silano
Si2H6
disilano
Si3H8
trisilano
Si4H10
tetrasilano
Si10H22
decasilano
Son compuestos binarios de hidrógeno y germanio que se enlazan generalmente siguiendo la misma fórmula que los silanos GenH2n+2. Los germanos al igual que los boranos y silanos no tienen un sistema de nomenclatura específico para ser nombrados y utilizan las mismas reglas de nomenclatura que los silanos, con la palabra germano como base.
Compuesto
Nombre
GeH4
monogermano, germano o tetrahidruro de germano
Ge2H6
digermano
Ge3H8
trigermano
Ge4H10
tetragermano
Ge10H22
decagermano


Son compuestos orgánicos poliatómicos formados por hidrógeno y carbono.
Véase también: Química orgánica
También llamados oxoácidos y oxiácidos, son compuestos ternarios originados de la combinación del agua con un anhídrido u óxido ácido. La fórmula general para los oxácidos es H + NoMetal + O. En el sistema tradicional se les nombra con las reglas generales para los anhídridos sustituyendo la palabra anhídrido por ácido (ya que de los anhídridos se originan). Para el sistema Stock se nombra al no metal con el sufijo –ato, luego el número de valencia del no metal y por último se agrega “de hidrógeno”. Y para la nomenclatura sistemática se indica el número de átomos de oxígeno con el prefijo correspondiente (según reglas generales para este sistema) seguido de la partícula “oxo” unida al nombre del no metal y el sufijo –ato, por último se agrega al nombre las palabras “de hidrógeno”.
Anhídrido + Agua → oxácido
SO3 + H2O → H2SO4
Compuesto
Nomenclatura sistemática
Nom. Stock
Nom. tradicional
H2SO4
ácido tetraoxosulfúrico
sulfato (VI) de hidrógeno[2]
ácido sulfúrico
HClO4
ácido tetraoxoclórico
clorato (VII) de hidrógeno[2]
ácido perclórico
H2SO2
ácido dioxosulfúrico
sulfato (II) de hidrógeno[2]
ácido hiposulfuroso
Como se indica en la sección de los anhídridos, el nitrógeno y el fósforo no forman anhídridos cuando se enlazan con el oxígeno, mientras estos trabajan con los números de valencia 4 y 2, si no que forman óxidos y por esta razón el nitrógeno y el fósforo no pueden formar oxácidos con estos números de valencia.
Ya que para nombrar a los compuestos se necesita saber con qué números de valencia trabajan los elementos, una manera muy fácil para determinar los números, según la fórmula molecular, es sumando los números de valencia del oxígeno y el hidrógeno planteando una ecuación para la valencia del no metal, ya que la suma de cargas o valencias debe ser cero para que la molécula sea neutra (ver la sección reglas generales). Como se describe anteriormente la formula general para estos compuestos es H + NoMetal + O, donde el oxígeno es el elemento más electronegativo y el hidrógeno y el no metal son los elementos más electropositivos. El hidrógeno trabaja con la valencia +1 y el oxígeno con la valencia -2, siempre en estos compuestos. Por ejemplo: H2SO4, como hay 4 átomos de oxígeno y este trabaja con -2, en total para los oxígenos la carga seria de -8. De la misma manera, como hay 2 hidrógenos y este trabaja con valencia +1 la carga para este elemento es de +2. Como la suma de las cargas debe ser igual a cero, entonces el azufre trabajara con la valencia +6. Los elementos con valencias y la operatoria serían: H2+1 + S+6 + O4-2 => (+1)2 + (+6) + (-2)4 = 0. Como el azufre trabaja con +6 su terminación o sufijo sería –ico y el compuesto se nombraría “ácido sulfúrico”.

Por otra parte, ciertos anhídridos pueden formar hasta tres oxácidos distintos dependiendo de cuantas moléculas de agua se agreguen por molécula de anhídrido. En otras palabras, en ciertos oxácidos especiales, un solo “no metal” con una sola valencia puede formar hasta tres oxácidos. Estos no metales son el boro, fósforo, arsénico y el antimonio. Para diferenciar a estos oxácidos en el sistema tradicional se utilizan tres prefijos dependiendo de cuantas moléculas de agua se agregan por cada una molécula de anhídrido. Estos son:
meta-… (1 molécula de agua)
piro-… (2 moléculas de agua)
orto-… (3 moléculas de agua) este prefijo se puede omitir
El silicio y el yodo también pueden formar oxácidos con más de una molécula de agua, en dos casos especiales.
Compuesto
Nom. sistemática
Nom. Stock
Nom. tradicional
P2O5 + H2O → 2HPO3
ácido trioxofosfórico
trioxofosfato (V) de hidrógeno
ácido metafosfórico
P2O5 + 2H2O → H4P2O7
ácido heptaoxodifosfórico
heptaoxodifosfato (V) de hidrógeno
ácido pirofosfórico
P2O5 + 3H2O → 2H3PO4
ácido tetraoxofosfórico
tetraoxofosfato (V) de hidrógeno
ácido ortofosfórico o ácido fosfórico
I2O7 + 5H2O → 2H5IO6
ácido hexaoxoyódico
hexaoxoyodato (VII) de hidrógeno
ácido ortoperyódico
SiO2 + 2H2O → H4SiO4
ácido tetraoxosilícico
tetraoxosilicato (IV) de hidrógeno
ácido ortosilícico (excepción sólo 2 moléculas de agua)
Como se describe previamente los oxácidos están formados por un anhídrido (no metal + oxígeno) y el hidrógeno, pero como se indica en la secciones de anhídridos y óxidos básicos algunos metales, también pueden formar anhídridos, y por esta razón, también pueden formar oxácidos.
Compuesto
Nomenclatura sistemática
Nom. Stock
Nom. tradicional
H2CrO4
ácido tetraoxocrómico
cromato (VI) de hidrógeno[2]
ácido crómico
H2MnO3
ácido trioxomangánico
manganato (IV) de hidrógeno[2]
ácido manganoso
H2MnO4
ácido tetraoxomangánico
manganato (VI) de hidrógeno[2]
ácido mangánico
HMnO4
ácido tetraoxomangánico
manganato (VII) de hidrógeno[2]
ácido permangánico
HVO3
ácido trioxovanádico
vanadato (V) de hidrógeno[2]
ácido vanádico
Los oxiácidos son compuestos que presentan uniones covalentes, pero cuando se disuelven en agua ceden fácilmente iones H+1 (protones). Esto se debe a que el agua, por la naturaleza polar de sus moléculas, tiene tendencia a romper las uniones covalentes polares de los ácidos, con formación de iones H+1 y del anión ácido correspondiente. Por ejemplo, el ácido nítrico que se disuelve en agua da lugar a un anión nitrato y un catión hidrógeno.
(Agua)……….
HNO3 →→→→ NO3-1 + H+1
La ionización de un oxácido al disolverse en agua es un ejemplo de proceso que se cumple en ambos sentidos, es decir que, al mismo tiempo que se forman iones a partir del ácido, este se regenera constantemente por la unión de aniones y cationes. Los procesos de esta naturaleza se denominan reversibles.
(Agua)……….
HNO3 →→→→ NO3-1 + H+1
……….(Agua)
NO3-1 + H+1 →→→→ HNO3
Estructura de Lewis que sobre el proceso de ionización reversible para el hidróxido, ácido nítrico. Esta imagen esta mejor explicada en la sección 6 del articulo.
Ácidos
Los ácidos son compuestos que se originan por combinación del agua con un anhídrido u óxido ácido, o bien por disolución de ciertos hidruros no metálicos en agua. En el primer caso se denominan oxácidos y en el segundo, hidrácidos. Ácido, también es toda sustancia que en solución acuosa se ioniza, liberando cationes hidrógeno.
Son compuestos formados por la unión de un óxido básico con agua. Se caracterizan por tener en solución acuosa el radical o grupo oxhidrilo o hidroxilo OH-1. Para nombrarlos se escribe con la palabra genérica hidróxido, seguida del nombre del metal electropositivo terminado en -oso o -ico según las reglas generales para el sistema tradicional. La fórmula general es Metal + (OH)-1x. En la nomenclatura Stock y sistemática se nombran con el nombre genérico hidróxido y las respectivas reglas generales.
Óxido básico + Agua → Hidróxido
Na2O + H2O → 2Na(OH)
Compuesto
Nomenclatura sistemática
Nomenclatura Stock
Nomenclatura tradicional
LiOH
hidróxido de monolitio o de litio
hidróxido de litio
hidróxido lítico
Pb (OH)2
dihidróxido de plomo
hidróxido de plomo (II)
hidróxido plumboso
Al (OH)3
trihidróxido de aluminio
hidróxido de aluminio (III)
hidróxido alumínico o hidróxido de aluminio
Los hidróxidos cuando se disuelven en agua se ionizan formando cationes metal e iones hidroxilo u oxhidrilo. Este proceso de ionización es reversible, es decir que así como se forma los cationes metal e iones hidroxilo a partir de un hidróxido, inversamente, también se pueden formar hidróxidos a partir de los cationes e iones ya mencionados.
(Agua)……..
Na(OH) →→→→ Na+1 + (OH)-1
……..(Agua)
Na+1 + (OH)-1 →→→→ Na(OH)
Un caso especial lo constituye el hidróxido de amonio. El amoníaco es un gas muy soluble en agua, su fórmula es NH3. Al disolverse reacciona con el agua formando el compuesto hidróxido de amonio. Este proceso es reversible.
…..(Agua)
NH3 + H2O →→→→ NH4(OH)
(Agua)…..
NH4(OH) →→→→ NH3 + H2O
Las sales son compuestos que resultan de la combinación de sustancias ácidas con sustancias básicas. Las sales comprenden tanto compuestos binarios o diatómicos, como ternarios. Y hay distintos tipos o formas de clasificarlas que son: sales neutras, sales ácidas, sales básicas y sales mixtas.
Sales neutras
Las sales neutras son compuestos formados por la reacción de un ácido con un hidróxido (compuesto ternario básico) formando también agua. Entre las sales neutras se encuentran las binarias y las ternarias, que se diferencian entre si por el ácido con el que reaccionan, siendo estos un hidrácido o un oxácido.
Cuando reacciona un ácido con un hidróxido para formar una sal neutra se combinan todos los cationes hidronio (H+1) con todos los aniones hidroxilo (OH-1). Los cationes H+1 son los que dan la propiedad de ácido a los hidrácidos y oxácidos, y los aniones OH-1 son los que dan propiedad de base a los hidróxidos, y cuando estos ácidos y bases reaccionan dan lugar a una neutralización, que es la formación de agua, mientras que los iones restantes de la reacción forman una sal. Es por esta razón que estas sales reciben el nombre de "neutras". Ver las ecuaciones abajo mostradas.

Las sales neutras binarias o sales haloideas son compuestos formados por un hidrácido y un hidróxido. Para nombrarlos en el sistema tradicional, stock y sistemático se aplican las reglas generales usando el nombre del no metal con el sufijo –uro como nombre genérico y el nombre del metal como nombre especifico.
En las dos primeras ecuaciones se presenta el proceso completo para la formación de una sal neutra binaria y en las ultimas dos se ejemplifica por separado la neutralización y la formación de la sal neutra.
Hidrácido + Hidróxido → Agua + Sal neutra
HCl + Na(OH) → H2O + NaCl

H+1 + Cl-1 + Na+1 + (OH)-1 → H2O + NaCl

H+1 + (OH)-1 → H2O
Cl-1 + Na+1 → NaCl
Compuesto
Nomenclatura sistemática
Nomenclatura Stock
Nomenclatura tradicional
NaCl
cloruro de sodio
cloruro de sodio
cloruro sódico o cloruro de sodio
CaF2
difluoruro de calcio
fluoruro de calcio
fluoruro cálcico
FeCl3
tricloruro de hierro
cloruro de hierro (III)
cloruro férrico
CoS
monosulfuro de cobalto
sulfuro de cobalto (II)
sulfuro cobaltoso
Nota: para el correcto nombramiento de estos compuestos hacer énfasis en que los no metales de los hidrácidos trabajan con la menor valencia (1 y 2), y como son los hidrácidos que reaccionan con los hidroxidos para formar las sales neutras binarias. Es por esta razón que en el caso del FeCl3 el hierro trabajo con la valencia -3 y el "no metal" cloro trabaja con -1, aunque el cloro posea las valencias 1, 3, 5 y 7.
Las sales neutras ternarias son compuestos formados por un hidróxido y un oxácido. La denominación que reciben las sales proviene del nombre del ácido, oxácido, que las origina. Para nombrar una sal cuando deriva de un ácido cuyo nombre especifico termina en -oso, se reemplaza dicha terminación por -ito. Análogamente cuando el nombre especifico del ácido termina en –ico, se reemplaza por -ato. Por ejemplo: el oxido de sodio (Na(OH)) reacciona con el ácido ortofósforico o ácido fosfórico (H3PO4) para formar la sal fosfato de sodio u ortofosfato de sodio (Na3PO4).
Otra manera para saber cuándo utilizar los sufijos –ito o –ato, en lugar de determinar de qué ácido proviene la sal neutra, para así nombrar el compuesto; se determina el número de valencia con el que trabaja el no metal diferente de oxigeno en el compuesto. El procedimiento es similar al utilizado en los oxácidos (sección oxácidos, tercer párrafo). Los puntos que hay que tener en cuanta son:
  • El elemento más electronegativo es el oxígeno y los elementos mas electropositivos son el metal y el no metal.
  • En la fórmula molecular el metal va a la izquierda, el no metal va al centro y el oxígeno va a la derecha.
  • El oxígeno trabaja con el número de valencia -2.
  • Los elementos que formaran el radical u oxoanión son el no metal y el oxígeno, razón que obliga a que la suma de valencias o cargas entre estos dos elementos sea negativa.
  • La suma de cargas entre los tres elementos o entre el metal y el radical será igual a cero, lo que significa que la molécula sera neutra.
Por ejemplo: Ca(ClO3)2. En resumen el procedimiento se basa en determinar la carga de uno de los dos radicales, que será negativo, y con esto se puede establecer el número con el que debe trabajar el metal, para que la suma entre este y los dos radicales sea igual a cero. Como primer paso hay que determinar la carga del radical; como hay 3 oxígenos en el radical y cada oxígeno trabaja con -2 la carga total de los oxígenos en un radical es de -6; como hay 1 cloro en el radical y la suma de valencias entre el oxigeno y el cloro dentro del radical debe ser negativo, el cloro trabajara con +5 de valencia. Para probar que el cloro debe trabajar con +5 únicamente, en este compuesto, se hace la operatoria con cada número de valencia del cloro; si el cloro trabajara con +1, la sumatoria con la carga -6 de los oxígenos seria igual a -5, esta carga de -5 seria de un solo radical y como hay dos, los radicales tendrían una carga de -10, así que el calcio para sumar una carga neta de cero para la molécula debería trabajar con un número de valencia +10, el cual no existe, entonces el cloro no puede trabajar con -1 en el radical; si el cloro trabajara con el +3 ocurriría lo mismo, al final el calcio para equilibrar la molécula debería trabajar con la valencia +6, valencia con la que no cuenta el cloro; y si el cloro trabajara con +6 la sumatoria de valencias entre el cloro y los oxígenos dentro del radical seria igual a cero, lo cual no es correcto ya que el radical debe tener una carga negativa. Ya que el cloro trabaja con +5 la carga sumada de los dos radicales es de -2, así que el calcio tendría que usar la valencia +2 para hacer cero la carga neta de la molécula. Cuando en una molécula hay solamente un radical se omiten los paréntesis de la fórmula
Diagrama sobre la distribución de valencias en un compuesto ternario. Esta imagen es explicada en la seccion 7.1 del articulo .
En el sistema tradicional se utiliza como nombre genérico el nombre del no metal con el sufijo y prefijo correspondiente a su número de valencia y como nombre especifico el nombre del metal, elemento proporcionado por el hidróxido. Según el número de valencia del no metal en la sal (o del no metal en el oxácido que da origen a la sal) los sufijos son:

                    hipo -   …   - oso         (para números de valencia 1 y 2)      hipo -   …   - ito
                    … -oso                     (para números de valencia 3 y 4)      … - ito
                    … -ico                     (para números de valencia 5 y 6)      … - ato
                    per -    …   - ico         (para el número de valencia 7)        per -    …   - ato
En el ejemplo anterior, Ca(ClO3)2, como el cloro trabaja con la valencia +5, el compuesto se nombra Clorato de calcio. En el sistema Stock se utiliza como nombre genérico el nombre del no metal con el prefijo correspondiente al número de oxígenos presentes por radical en el compuesto (según la tabla de prefijos griegos), seguido de la partícula “oxo”, más el nombre del no metal con el sufijo ato. Después del nombre general se indica la valencia del no metal con números romanos, y luego como nombre especifico se utiliza el nombre del metal.
Oxácido + Hidróxido → Agua + Sal neutra
H3PO4 + 3Na(OH) → 3H2O + Na3PO4
Compuesto
Nom. Stock
Nom. tradicional
Na3PO4
fosfato (V) de sodio[2]
fosfato de sodio u ortofosfato de sodio
CaSO4
sulfato (VI) de calcio[2]
sulfato de calcio
NaClO4
clorato (VII) sodio[2]
perclorato de sodio
Mg(BrO)2
bromato (I) de magnesio[2]
hipobromito de magnesio
Sales ácidas
Las sales ácidas son compuestos cuaternarios que resultan del reemplazo parcial de los hidrógenos de un ácido por átomos metálicos. Los ácidos deben presentar dos o más hidrógenos en su molécula para formar estas sales. Para nombrarlos en el sistema tradicional se siguen las reglas de las sales neutras ternarias agregando la palabra “acido” antes del nombre del metal. Y para nombrarlos en el sistema Stock y sistemático se usan las reglas generales para las sales neutras ternarias, en estos dos sistemas, agregando la palabra “hidrógeno” antes del nombre del metal. Para poder encontrar la valencia del no metal para así poder nombrar correctamente la sal se puede usar el método utilizado en los compuestos de sales neutras ternarias, teniendo en cuenta: que el oxigeno trabaja con valencia -2; el hidrógeno trabaja con valencia +1; estos compuestos siguen la fórmula general Metal + Hidrógeno + No Metal + Oxigeno; los elementos con valencias positivas son el metal, el hidrógeno y los elementos con valencias negativas son el no metal y el oxigeno.
Ácido + Hidróxido → Agua + Sal ácida
H2SO4 + Na(OH) → H2O + NaHSO4
Compuesto
Nom. Stock y sistemática
Nom. tradicional
NaHSO4
hidrógenosulfato (VI) de sodio[2]
sulfato ácido de sodio[2]
KHCO3
hidrógenocarbonato de Potasio[2]
carbonato ácido de Potasio[2]
Sales básicas
Estas sales son compuestos que resultan de reemplazar parcialmente los oxhidrilos de un hidróxido por los aniones de un ácido. Para nombrarlos en el sistema tradicional depende de si el ácido es binario o ternario, es decir que si se trata de un hidróxido o un hidrácido. Cuando el ácido es un hidrácido se utiliza el nombre del no metal con su sufijo uro y se le antepone el prefijo “hidroxo” para el nombre general y como nombre especifico el nombre del metal. Y cuando el ácido es un hidróxido, como nombre general, se utiliza el nombre del no metal con el prefijo “hidroxo” y su correspondiente sufijo según su valencia (como se indica en la sección de las sales neutras ternarias), y como nombre especifico el nombre del metal.
Ácido + Hidróxido → Agua + Sal básica
HNO3 + Ca(OH)2 → H2O + CaNO3(OH)
Compuesto
Nomenclatura tradicional
MgCl(OH)
hidroxocloruro de magnesio
CaNO3(OH)
hidroxonitrato de calcio
Sales mixtas
Las sales mixtas son compuestos resultado de sustituir los hidrógenos de un ácido por átomos metálicos distintos de hidróxidos. Las reglas para nombrar las sales mixtas en el sistema tradicional son análogas a las sales ácidas.
Ácido + Hidróxido1 + Hidróxido2 → Agua + Sal mixta
H2SO4 + Na(OH) + K(OH) → 2H2O + NaKSO4
Compuesto
Nomenclatura tradicional
NaKSO4
tetraoxosulfato de sodio y potasio
CaNaPO4
ortofosfato de calcio y sodio
Poliácidos
Se trata de aquellos oxiácidos que resultan de la unión de 2 ó 3 moléculas de oxiácidos con la pérdida de una molécula de agua por cada unión que se realice. Es como si fuesen dímeros o trímeros.
Se nombran indicando el número de moléculas de ácido que se han unido con un prefijo (Nomenclatura tradicional) o indicando con prefijos el número de átomos del no metal o metal en los pocos casos en que ocurre (demás nomenclaturas).
Ejemplo
Nom. Stock
Nom. sistemática
Nom. tradicional
H2S2O7
ácido heptaoxodisulfúrico (VI)
heptaoxodisulfato (VI) de hidrógeno
ácido disulfúrico
H2Cr2O7
ácido heptaoxodicrómico (VI)
heptaoxodicromato (VI) de hidrógeno
ácido dicrómico
H5P3O10
ácido decaoxotrifosfórico (V)
decaoxotrifosfato (V) de hidrógeno
ácido trifosfórico


Las sales de los poliácidos se nombran de forma análoga a las oxisales.
Ejemplo
Nomenclatura sistemática y funcional
Nomenclatura tradicional
CaCr2O7
heptaoxodicromato (VI) de calcio
dicromato cálcico o de calcio
Mg2P2O7
heptaoxodifosfato (V) de magnesio
difosfato magnesico
Na2S2O7
heptaoxodisulfato (VI) de sodio
disulfato sódico


Peroxoácidos
Son aquellos oxoácidos que han sustituido un oxígeno por un grupo peroxo O2-. Su fórmula no se simplifica.
En la nomenclatura tradicional (la más frecuente) se añade peroxo-, y en las restantes se indica con -peroxo- el oxígeno sustituido. Si a la hora de formular pudiera haber confusión con otro oxoácido, se indica el grupo peroxo entre paréntesis.
Ejemplo
Nomenclatura sistemática
Nomenclatura Stock
Nomenclatura tradicional
H2SO5
ácido trioxoperoxosulfúrico (VI)
trioxoperoxosulfato (VI) de hidrógeno
ácido peroxosulfúrico
HOONO ó HNO (O2)
ácido monoxoperoxonítrico (V)
monoxoperoxonitrato (V) de hidrógeno
ácido peroxonítrico
H3BO4
ácido dioxoperoxobórico (III)
dioxoperoxoborato (III) de hidrógeno
ácido peroxobórico


Las peroxisales se nombran de forma análoga a las oxisales.
Ejemplo
Nomenclatura sistemática y Stock
Nomenclatura tradicional
K2S2O8
hexaoxoperoxodisulfato (VI) de potasio
peroxodisulfato de potasio
Ba[NO (O2)]2
oxoperoxonitrato (III) de bario
peroxonitrito de bario o bárico
CaSO5
trioxoperoxosulfato (VI) de calcio
peroxosulfato de calcio


Tioácidos
Son aquellos oxoácidos que resultan de la sustitución de uno o varios oxígenos por azufres. Se nombran con el prefijo tio- seguido por el ácido de origen (nomenclatura tradicional) o -tio- en la sistemática y de Stock, indicando con un prefijo el número de oxígenos restantes. Si se escribe tio sin prefijo numérico en la nomenclatura tradicional, se está indicando que se han sustituido todos los O por S, excepto en el caso de los tioácidos del azufre (aquí tio=monotio).
Fórmula General:
R.CO.SH o R.CS.OH



Ejemplo
Nomenclatura sistemática
Nomenclatura Stock
Nomenclatura tradicional
H2S2O3
ácido trioxotiosulfúrico (VI)
trioxotiosulfato (VI) de hidrógeno
ácido tiosulfúrico
HNSO2
ácido dioxotionítrico (V)
dioxotionitrato (V) de hidrógeno
ácido tionítrico
H3PS2O2
ácido dioxoditiofosfórico (V)
dioxoditiofosfato (V) de hidrógeno
ácido ditiofosfórico


Las tiosales se nombran de forma análoga a las oxisales.
Ejemplo
Nomenclatura sistemática y stock
Nomenclatura tradicional
FeS2O3
trioxotiosulfato (VI) de hierro (II)
tiosulfato ferroso
Al2(HPS4)3
hidrógenotetratiofosfato (V) de aluminio
hidrógenotiofosfato de aluminio
Na3PS3O
oxotritiofosfato (V) de sodio
tritiofosfato de sodio


Son aquellos átomos o moléculas cargados eléctricamente. Pueden ser de carga positiva (cationes) o de carga negativa (aniones).
Cationes mono y poliatómicos
Son iones con carga positiva. Si son monoatómicos, se nombran simplemente nombrando el elemento después de la palabra catión. Por ejemplo, Li+ catión litio. Si el elemento tiene varios estados de oxidación (valencias) se usan números romanos (Stock) o los afijos hipo- -oso, -oso, -ico, per- -ico (tradicional).
Ejemplo
Nomenclatura Stock
Nomenclatura tradicional
Fe3+
catión hierro (III)
catión férrico
Cu+
catión cobre (I)
catión cuproso


Cuando se trata de cationes poliatómicos, se distinguen dos casos:
a) Si proceden de oxoácidos se añade el sufijo -ilo al nombre del oxoácido correspondiente en nomenclaturas tradicional (éste puede indicar la valencia en números romanos), también se puede nombrar en la Stock. Es como el oxoácido sin moléculas de agua.
Ejemplo
Nomenclatura tradicional
Nomenclatura Stock
NO2+
catión nitroilo
catión dioxonitrógeno (V)
NO+
catión nitrosilo
catión monoxonitrógeno (III)
SO2+
catión sulfinilo o tionilo
catión monoxoazufre (IV)
SO22+
catión sulfonilo o sulfurilo
catión dioxoazufre (VI)
UO2+
catión uranilo (V)
catión dioxouranio (V)
UO22+
catión uranilo (VI)
catión dioxouranio (VI)
VO3+
catión vanadilo (V)
catión monoxovanadio (V)
VO2+
catión vanadilo (IV)
catión dioxovanadio (IV)


b) Si proceden de hidruros, lleva el sufijo -onio.
Ejemplo
Nombre
H3O+
hidronio u oxonio
NH4+
PH4+
SbH4+
AsH4+
BiH4+
H2S+
H2Cl+